Biofabrication Under Fluorocarbon: A Novel Freeform Fabrication Technique to Generate High Aspect Ratio Tissue-Engineered Constructs

نویسندگان

  • Andreas Blaeser
  • Daniela F. Duarte Campos
  • Michael Weber
  • Sabine Neuss
  • Benjamin Theek
  • Horst Fischer
  • Willi Jahnen-Dechent
چکیده

Bioprinting is a recent development in tissue engineering, which applies rapid prototyping techniques to generate complex living tissues. Typically, cell-containing hydrogels are dispensed layer-by-layer according to a computer-generated three-dimensional model. The lack of mechanical stability of printed hydrogels hinders the fabrication of high aspect ratio constructs. Here we present submerged bioprinting, a novel technique for freeform fabrication of hydrogels in liquid fluorocarbon. The high buoyant density of fluorocarbons supports soft hydrogels by floating. Hydrogel constructs of up to 30-mm height were generated. Using 3% (w/v) agarose as the hydrogel and disposable syringe needles as nozzles, the printer produced features down to 570-μm diameter with a lateral dispensing accuracy of 89 μm. We printed thin-walled hydrogel cylinders measuring 4.8 mm in height, with an inner diameter of ∼2.9 mm and a minimal wall thickness of ∼650 μm. The technique was successfully applied in printing a model of an arterial bifurcation. We extruded under fluorocarbon, cellularized alginate tubes with 5-mm outer diameter and 3-cm length. Cells grew vigorously and formed clonal colonies within the 7-day culture period. Submerged bioprinting thus seems particularly suited to fabricate hollow structures with a high aspect ratio like vascular grafts for cardiovascular tissue engineering as well as branching or cantilever-like structures, obviating the need for a solid support beneath the overhanging protrusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based ...

متن کامل

An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs.

Quantification of shape fidelity of complex geometries for tissue-engineered constructs has not been thoroughly investigated. The objective of this study was to quantitatively describe geometric fidelities of various approaches to the fabrication of anatomically shaped meniscal constructs. Ovine menisci (n = 4) were imaged using magnetic resonance imaging (MRI) and microcomputed tomography (mic...

متن کامل

Bio-CAD modeling and its applications in computer-aided tissue engineering

CAD has been traditionally used to assist in engineering design and modeling for representation, analysis and manufacturing. Advances in Information Technology and in Biomedicine have created new uses for CAD with many novel and important biomedical applications, particularly tissue engineering in which CAD based bio-tissue informatics model provides critical information of tissue biological, b...

متن کامل

Laser printing of cells into 3D scaffolds.

One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and ...

متن کامل

Freeform fabrication of nanobiomaterials using 3D printing

Nanobiomaterials play an important role in nanobiotechnology and have made a great contribution to biomedical research and healthcare. Recent progress in nanobiomaterials has increased demand for multidisciplinary approaches from physical, biological and engineering sciences. Solid freeform fabrication (SFF) technologies are based on layer-by-layer deposition of materials which bring about new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013